If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2=40t-16t^2
We move all terms to the left:
-2-(40t-16t^2)=0
We get rid of parentheses
16t^2-40t-2=0
a = 16; b = -40; c = -2;
Δ = b2-4ac
Δ = -402-4·16·(-2)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-24\sqrt{3}}{2*16}=\frac{40-24\sqrt{3}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+24\sqrt{3}}{2*16}=\frac{40+24\sqrt{3}}{32} $
| 2y+y+0.33y=150 | | 20=32-2f | | 200-x/200=0,25 | | 241/6=-73/7+h | | 2y+y+1/3y=150 | | 2x+58=122 | | 5(d+6)=60 | | √3=x^2+2x | | 200-x/200=0,40 | | 3a+15=27 | | 200-x/200=40 | | 3x/4-2x-5/3=-2 | | 5(2g-4)=12 | | -2x^2-3+x4=0 | | 1÷3(5-3t)=5÷6(t-2) | | 7x+20=13x-4 | | 48=1/2b(8) | | 3a=2a(a+1) | | 5(2x-6)-3-3x=9 | | x^-1=-3 | | 44=-4(1-2x) | | a/4+5=11 | | 3.9+1.4(3c-2)=17.9 | | 9+5(g+3)=59 | | x+3=5x–2 | | 10x-15=9x+27 | | 4x2-5x+8=2x2-2x+7 | | 6+6g=10+4g | | 1/x+1/9x=0 | | 1/9x+1/x=1/18 | | 21=3s−4(21−s) | | 2(x+4)+8=38-4x |